Determination of effective mass density and modulus for resonant metamaterials.
نویسندگان
چکیده
This work presents a method to determine the effective dynamic properties of resonant metamaterials. The longitudinal vibration of a rod with periodically attached oscillators was predicted using wave propagation analysis. The effective mass density and modulus were determined from the transfer function of vibration responses. Predictions of these effective properties compared favorably with laboratory measurements. While the effective mass density showed significant frequency dependent variation near the natural frequency of the oscillators, the elastic modulus was largely unchanged for the setup considered in this study. The effective mass density became complex-numbered when the spring element of the oscillator was viscoelastic. As the real part of the effective mass density became negative, the propagating wavenumber components disappeared, and vibration transmission through the metamaterial was prohibited. The proposed method provides a consistent approach for evaluating the effective parameters of resonant metamaterials using a small number of vibration measurements.
منابع مشابه
Method for retrieving effective properties of locally resonant acoustic metamaterials
Acoustic metamaterials can be described by effective material properties such as mass density and modulus. We have developed a method to extract these effective properties from reflection and transmission coefficients, which can be measured experimentally. The dependency of effective properties on the positions of the boundaries of the acoustic metamaterial is discussed, and a proper procedure ...
متن کاملDynamic behaviour of concrete containing aggregate resonant frequency
The need to design blast resistant civilian structures has arisen due to aggressor attacks on many civilian structures around the world. Achieving vibration and wave attenuation with locally resonant metamaterials has attracted a great deal of consideration due to their frequency dependent negative effective mass density. In this paper, metaconcrete, a new material with exceptional properties i...
متن کاملNegative acoustic index metamaterial
Acoustic metamaterials utilizing periodic deep subwavelength resonators can attain negative acoustic properties unavailable in nature. We have developed a negative acoustic index metamaterial for water that combines Helmholtz and rod-spring resonators to control effective bulk modulus and mass density, respectively. Effective properties extracted from full-wave simulations of our metamaterial s...
متن کاملElastic wave transparency of a solid sphere coated with metamaterials
The elastic wave transparency phenomenon of a solid sphere coated with metamaterials is investigated in a solid host medium having nonzero shear modulus. The first three scattering coefficients of the coated sphere are derived in the Rayleigh limit and expressed in terms of the effective parameters of the coated sphere assemblage. It is found that the effective bulk modulus, mass density, and s...
متن کاملSoft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus
Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 132 4 شماره
صفحات -
تاریخ انتشار 2012